Study of a Coeecient Control Problem Using Nonsmooth Analysis
نویسندگان
چکیده
This report is concerned with a control problem associated to a semilinear second order ordinary diierential equation with pointwise state constraints. The control acts as a coeecient of the state equation. The nonlinear part of the equation is governed by a Nemytskij operator deened by a nonsmooth function. We prove the existence of optimal controls and obtain a necessary optimality condition utilizing the notion of Clarke's generalized directional derivative. Nemytskij operator. Clarke's generalized directional derivative.
منابع مشابه
Existence of three positive solutions for nonsmooth functional involving the p-biharmonic operator
This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...
متن کاملA General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming
For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints, we define a new gap function that generalizes the definitions of this concept in other articles. Then, we characterize the efficient, weakly efficient, and properly efficient solutions of the problem utilizing this new gap function. Our results are based on $(Phi,rho)-$invexity,...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملRobust Multigrid Methods for Nonsmooth Coefficient Elliptic Linear Systems
We survey the literature on robust multigrid methods which have been developed in recent years for solving second order elliptic PDEs with nonsmooth coeecients. We highlight the key ideas of designing robust multigrid methods which are able to recover the usual multigrid eeciency for nonsmooth coeecient PDEs on structured or unstructured grids. In particular, we shall describe various approache...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001